Invariance of the Fisher matrix

lukluk
Messages
8
Reaction score
0
Fisher matrix=(minus the) average of the second derivative of the log-likelihood with respect to the parameters

It seems to me the Fisher matrix for Gaussian data is invariant with respect to any (non-singular) linear transformation of the data; if correct this is a very useful property, however I cannot find a reference to this in the texts available to me. Can anyone confirm whether this is true or refer me to some discussion of this?

Thanks!
 
Physics news on Phys.org
lukluk said:
Fisher matrix=(minus the) average of the second derivative of the log-likelihood with respect to the parameters

It seems to me the Fisher matrix for Gaussian data is invariant with respect to any (non-singular) linear transformation of the data; if correct this is a very useful property, however I cannot find a reference to this in the texts available to me. Can anyone confirm whether this is true or refer me to some discussion of this?

Thanks!

The Fisher information matrix is equivalent to the reciprocal of the asymptotic variance-covariance matrix of the parameter. Under the transformation T(\vec{x})=A(\vec{x}) the information content of the matrix is unchanged.

Biometrika(1998)85,4 pp973-979
 
Last edited:
great thanks!
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top