Invariance of the speed of light

littleHilbert
Messages
55
Reaction score
0
Hello!

Consider the law of addition of velocities for a particle moving in the x-y plane:

u_x=\frac{u'_x+v}{1+u'_xv/c^2},\, u_y=\frac{u'_y}{\gamma(1+u'_xv/c^2)}

In the book by Szekeres on mathematical physics on p.238 it is said that if u'=c, then it follows from the above formulae that u=c, i.e. invariance of the speed of light under the given Lorentz boost, which is of course exactly what we wish, since a Lorentz boost must preserve the null cone.

The weird thing is that when I start with c^2=(u')^2=(u'_x)^2+(u'_y)^2 and try to apply the above formulae to simply get (u'_x)^2+(u'_y)^2=(u_x)^2+(u_y)^2, i.e. working backwards towards the invariance of the null cone, I get quickly lost in the actual computation, because it seems to be leading nowhere…nothing cancels out. It doesn't matter which boost one takes…it doesn't seem to work (at the moment).

It can't be that hard. I don't know what I'm doing wrong, and can't imagine that I missed some concept. Did anybody already see how the computation goes? Is there anything one should pay attention to? Thanks
 
Physics news on Phys.org
On the same page, Szekeres outlines a method that shows this.
 
If you mean using the angles in u_x=u \cos \theta,\, u_y=u \sin \theta, \, u'_x=u' \cos \theta',\, u'_y=u' \sin \theta' …does it really help? I tried to plug them in, too…but same thing…the computation gets lengthier and seems to be getting nowhere. There is actually no more on that page, except for the relation between the angles.
 
littleHilbert said:
If you mean using the angles in u_x=u \cos \theta,\, u_y=u \sin \theta, \, u'_x=u' \cos \theta',\, u'_y=u' \sin \theta' …does it really help? I tried to plug them in, too…but same thing…the computation gets lengthier and seems to be getting nowhere. There is actually no more on that page, except for the relation between the angles.

Yes, use ##u'_x = c \cos \theta'## and ##u'_y = c \sin \theta'## in

\frac{u_x}{c} = \frac{u'_x+v}{c+u'_xv/c},\, \frac{u_y}{c}=\frac{u'_{y}/\gamma}{(c+u'_xv/c)},

and calculate ##\left( u_{x}/c \right)^2 + \left( u_{y}/c \right)^2##.

In ##u_y##, keep the ##1/\gamma## in the numerator, so that ##1/\gamma^2 = 1 - v^2 / c^2##. Expand the squares, and write ##\sin^2 \theta' = 1 - \cos^2 \theta'##.
 
Oh yes, that sounds much more promising! I'll try this now…thanks in advance! :-)
 
OK, that was trivial...I knew it must be easy…if one arranges things the right way. I too was using the pythagorean theorem in order to get rid of some terms. But at the same time I was computing the difference u^2_x+u^2_y-c^2 to get 0…and yeah…somehow fell asleep.
Many thanks, George.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...

Similar threads

Back
Top