Pyter
- 164
- 16
Then I'm citing from your link (emphasis mine):PeroK said:Take a look at this:
https://math.ucr.edu/home/baez/physics/Relativity/SpeedOfLight/speed_of_light.html
The observed speed of a faraway light beam depends on the metric, and if the latter depends on time, also the light speed does.None of the preceding discussion actually depends on the distances being large; it's just easier to visualise if we use such large distances. So now transfer that discussion to a rocket you are sitting in, far from any gravity and uniformly accelerated, meaning you feel a constant weight pulling you to the floor. "Above" you (in the direction of your acceleration), time speeds up and light travels faster than c, arbitrarily faster the higher up you want to consider. Now use the Equivalence Principle to infer that in the room you are sitting in right now on Earth, where real gravity is present and you aren't really accelerating (we'll neglect Earth's rotation!), light and time must behave in the same way to a high approximation: light speeds up as it ascends from floor to ceiling, and it slows down as it descends from ceiling to floor; it's not like a ball that slows on the way up and goes faster on the way down. Light travels faster near the ceiling than near the floor. But where you are, you always measure it to travel at c; no matter where you place yourself, the mechanism that runs the clock you're using to measure the light's speed will speed up or slow down precisely in step with what the light is doing. If you're fixed to the ceiling, you measure light that is right next to you to travel at c. And if you're fixed to the floor, you measure light that is right next to you to travel at c. But if you are on the floor, you maintain that light travels faster than c near the ceiling. And if you're on the ceiling, you maintain that light travels slower than c near the floor.