(adsbygoogle = window.adsbygoogle || []).push({}); ... An Invariant I is of degree p if it is a linear invariant of the p-fold tensor product of the variable with itself, that is,

[tex]IA=J(A\otimes ...\otimes A)[/tex]

- Bishop & Goldberg: Tensor Analysis on Manifolds, Dover 1980, p. 86

I think I've misunderstood their definition of an invariant. The pth power of the trace function seems to be homogeneous of degree p rather than linear: Problem 2.14.3. Show that (Tr A)^{p}, where A is a tensor of type (1,1), in an invariant of degree p. [The fact that it is an invariant follows from the fact that Tr A is invariant. The question is whether (Tr A)^{2}is a linear function of the coefficients of [itex]A\otimes A[/itex] etc.]

- ~ p. 87

[tex]I(\lambda A) = J((\lambda A)\otimes (\lambda A)) = (\text{Tr}\, \lambda A)^2[/tex]

[tex]=\lambda\lambda A^i_kA^r_m\delta^k_i\delta^m_r=\lambda\lambda A^k_kA^m_m=\lambda^2 (\text{Tr}\, A)^2= \lambda^2 IA \neq \lambda IA,[/tex]

where [itex]\lambda[/itex] is a scalar. (Summing over like indices.)

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Invariant of degree p

Can you offer guidance or do you also need help?

Draft saved
Draft deleted

Loading...

Similar Threads - Invariant degree | Date |
---|---|

I Tensor Invariance and Coordinate Variance | May 14, 2017 |

I How to prove that shear transform is similarity-invariant? | Oct 16, 2016 |

I Existence of basis for P_2 with no polynomial of degree 1 | Oct 7, 2016 |

I Third Invariant expressed with Cayley-Hamilton Theorem | Apr 11, 2016 |

Question about invariant w.r.t. a group action | Sep 23, 2014 |

**Physics Forums - The Fusion of Science and Community**