(adsbygoogle = window.adsbygoogle || []).push({}); ... An Invariant I is of degree p if it is a linear invariant of the p-fold tensor product of the variable with itself, that is,

[tex]IA=J(A\otimes ...\otimes A)[/tex]

- Bishop & Goldberg: Tensor Analysis on Manifolds, Dover 1980, p. 86

I think I've misunderstood their definition of an invariant. The pth power of the trace function seems to be homogeneous of degree p rather than linear: Problem 2.14.3. Show that (Tr A)^{p}, where A is a tensor of type (1,1), in an invariant of degree p. [The fact that it is an invariant follows from the fact that Tr A is invariant. The question is whether (Tr A)^{2}is a linear function of the coefficients of [itex]A\otimes A[/itex] etc.]

- ~ p. 87

[tex]I(\lambda A) = J((\lambda A)\otimes (\lambda A)) = (\text{Tr}\, \lambda A)^2[/tex]

[tex]=\lambda\lambda A^i_kA^r_m\delta^k_i\delta^m_r=\lambda\lambda A^k_kA^m_m=\lambda^2 (\text{Tr}\, A)^2= \lambda^2 IA \neq \lambda IA,[/tex]

where [itex]\lambda[/itex] is a scalar. (Summing over like indices.)

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Invariant of degree p

Can you offer guidance or do you also need help?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**