What is the Inverse Derivative of f(x)=x^3+x at x=2?

Mach
Messages
14
Reaction score
0

Homework Statement



Assume the function f(x)=x^3+x has an inverse in R. Determine d/dx(f^-1(x)) at x=2.

Homework Equations



(f^-1(x))'=1/f'(f^-1(x))

The Attempt at a Solution



y'=3x^2+1

(f^-1(x))'=1/(3y^2+1)

now i substitute f^-1(2), y=10, into the equation but do not get the correct answer. I suspect that the mistake i am making is becuase i do not fully understand the question. Any help is greatly appreciated.
 
Physics news on Phys.org
f^-1 is the functional inverse, not the reciprocal.
 
<br /> \frac{dy}{dx} = 3 x^2 + 1<br />
using implicit differentiaion
<br /> \frac{dx}{dy} = \frac{1}{\frac{dy}{dx}} = \frac{1}{3 x^2 + 1}<br />
accordingly replacing x by y
<br /> \frac{dy}{dx} = \frac{1}{3 y^2 + 1}<br />
i.e.
<br /> \frac{dy}{dx} = \frac{1}{3 \left( {x^3 + x } \right)^2 + 1}<br />
then you have only to substituting x=2.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top