Apr 20, 2004 #1 OjBinge Messages 1 Reaction score 0 Does anyone know the inverse laplace transformation of the following: (se^-s)/(s^(2)+1)
Apr 20, 2004 #2 Max0526 Messages 41 Reaction score 0 done Hi; This is the answer to your problem. Done by Maple 9. Best of luck, Max. Attachments invlap1.gif 4.1 KB · Views: 648 Last edited: Apr 20, 2004
Apr 20, 2004 #3 faust9 Messages 690 Reaction score 2 pull out the e^{-s} leaving: L^{-1}{ \{ \frac{s}{s^2+1} \}=f(t-a) Now, the e can be converted to a unit step function U(t-a), and f(s-a) should be apparent. Combine the unit step function with F(s) to get an end result.
pull out the e^{-s} leaving: L^{-1}{ \{ \frac{s}{s^2+1} \}=f(t-a) Now, the e can be converted to a unit step function U(t-a), and f(s-a) should be apparent. Combine the unit step function with F(s) to get an end result.