MHB Inverse trigonometric functions

AI Thread Summary
The discussion centers on evaluating the expression $1. ~ \arccos(\cos\frac{4\pi}{3})$. Participants clarify that since the range of the arccosine function is $[0, \pi]$, $\cos\frac{4\pi}{3}$ should be expressed in that range. The correct transformation shows that $\cos\frac{4\pi}{3} = \cos\frac{2\pi}{3}$, leading to the conclusion that $\arccos(\cos\frac{4\pi}{3}) = \frac{2\pi}{3}$. A typographical error in the calculations is noted, indicating a possible confusion in the values used. The final consensus confirms that the answer is indeed $\frac{2\pi}{3}$.
Guest2
Messages
192
Reaction score
0
What's $1. ~ \displaystyle \arccos(\cos\frac{4\pi}{3})?$ Is this correct?

The range is $[0, \pi]$ so I need to write $\cos\frac{4\pi}{3}$ as $\cos{t}$ where $t$ is in $[0, \pi]$

$\cos(\frac{4\pi}{3}) = \cos(2\pi-\frac{3\pi}{3}) = \cos(\frac{2\pi}{3}) $ so the answer is $\frac{2\pi}{3}$
 
Mathematics news on Phys.org
There's an error in your last line.

Using symmetry,

$\cos\dfrac{4\pi}{3}=\cos\left(\pi-\dfrac{\pi}{3}\right)=\cos\dfrac{2\pi}{3}$
 
greg1313 said:
There's an error in your last line.

Using symmetry,

$\cos\dfrac{4\pi}{3}=\cos\left(\pi-\dfrac{\pi}{3}\right)=\cos\dfrac{2\pi}{3}$

Thanks. My reasoning was that cosine has a period $2\pi$. Where have I messed up?
 
Guest said:
What's $1. ~ \displaystyle \arccos(\cos\frac{4\pi}{3})?$ Is this correct?

The range is $[0, \pi]$ so I need to write $\cos\frac{4\pi}{3}$ as $\cos{t}$ where $t$ is in $[0, \pi]$

$\cos(\frac{4\pi}{3}) = \cos(2\pi-\frac{3\pi}{3}) = \cos(\frac{2\pi}{3}) $ so the answer is $\frac{2\pi}{3}$

$\displaystyle \begin{align*} \arccos{ \left[ \cos{ \left( \frac{4\,\pi}{3} \right) } \right] } &= \arccos{ \left[ \cos{ \left( \pi + \frac{\pi}{3} \right) } \right] } \\ &= \arccos{ \left[ -\cos{ \left( \frac{\pi}{3} \right) } \right] } \\ &= \arccos{ \left( -\frac{1}{2} \right) } \\ &= \pi - \arccos{ \left( \frac{1}{2} \right) } \\ &= \pi - \frac{\pi}{3} \\ &= \frac{2\,\pi}{3} \end{align*}$
 
Guest said:
My reasoning was that cosine has a period $2\pi$. Where have I messed up?

You typed a '3' where you probably intended a '4'.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top