Irradiance of sun in an image?

AI Thread Summary
The discussion revolves around calculating the irradiance of the Sun in an image based on given parameters, including the Sun's irradiance at sea level of 500 W/m². The user attempts to determine the total power falling on the lens and subsequently the power per unit area in the image. They calculate the area of the lens and the image, leading to an estimated irradiance of 2.29 x 10^9 W/m². However, there is uncertainty regarding the lens diameter, which is crucial for accurate calculations. The conversation highlights the importance of understanding lens properties and refractive index in determining the upper bounds of irradiance.
carnivalcougar
Messages
40
Reaction score
0

Homework Statement



What will be the irradiance (power per unit area) in the image, if the Sun's irradiance at the sea level is I = 500W/m^2

Lens is 200mm f
Sun is 150x10^9 m away
Diameter of sun is 1.4x10^9 m


Homework Equations





The Attempt at a Solution



I know that at the lens the irradiance will be the same i.e. 500W/m^2 but at the image the irradiance will be magnified. I'm not sure how to get there though.
I know an image of the sun will be .2m from the lens and the diameter of the image will be .00187m because M=di/do = .2m/150x10^9 = 1.333X10^-12 and 1.333x10^-12 multiplied by the diameter of the sun is .000187m.
 
Physics news on Phys.org
What's the total power falling on the lens? What's the total power in the image?
 
I'm not sure how to find the diameter of the lens which is what I need to find the total power falling on the lens
 
I think that the radius of the lens is equal to 2f which would make the radius .4m. Therefore, the area of the lens is .50265m^2. Multiply this by 500 and this tells you the power on the lens which is 251.327W. The area of the image is 1.099X10^-7m^2 which is from ((.000187m)^2(pi)). Therefore, 251.327W also falls on this same area and dividing 251.327W by the area of the image (1.099X10^-7m^2) will give you the power per m^2 which is 2.29X10^9 W/m^2

Is this correct?
 
carnivalcougar said:
I'm not sure how to find the diameter of the lens which is what I need to find the total power falling on the lens

Good point. Then I don't see how you can answer the question. carnivalcougar gives a way to find an upper bound, since the focal length sets a limit on the diameter of the lens. But it will depend on the refractive index.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top