- 37

- 0

**1. Homework Statement**

a. Prove that x^2+1 is irreducible over the field F of integers mod 11.

b. Prove that x^2+x+4 is irreducible over the field F of integers mod 11.

c. Prove that F[x]/(x^2+1) and F[x]/(x^2+x+4) are isomorphic.

**2. Homework Equations**

A polynomial p(x) in F[x] is said to be irreducible over F if whenever p(x)=a(x)b(x) with

a(x),b(x)[tex]\in[/tex] F[x], then one of a(x) or b(x) has degree 0 (i.e. constant).

I was also told by somebody it's sufficient to show that there aren't any zeros...

**3. The Attempt at a Solution**

a. The zeros of x^2+1 are + and - i. Therefore, it is irreducible over F.

b. The zeros of x^2+x+4 are also imaginary (-.5 + or - 1.93649167 i), and it is therefore irreducible over F.

c. Each field has 121 elements, so they're isomorphic?

Thanks in advance for the help!