MHB Is 1, α, α², ..., αⁿ⁻¹ a Basis for ℚ(α)?

  • Thread starter Thread starter said
  • Start date Start date
  • Tags Tags
    Dimensions
said
Messages
5
Reaction score
0
Let α ∈ ℂ be a complex number. Let V = ℚ(α) be the rational vector space spanned by powers of α. That is
ℚ(α) = <1,α,α2,...>.
1) If P(t) is a polynomial of degree n such that P(α) = 0, show that dimℚ(α) is at most n.
Here is my attempt to solve this question. Please give me some feedback/corrections.

Since ℚ(α) = <1,α,α2,...> we know that 1,α,α2,... span ℚ(α).
To show that dimℚ(α) is at most n, we must show that 1,α,α2,..,αn-1 is a basis of ℚ(α).
To show it is a basis,
i) 1,α,α2,..,αn-1 must span ℚ(α)
ii) 1,α,α2,..,αn-1 must be linearly independent.For span:I would say that since 1,α,... spans ℚ(α) then 1,α,...,αn-1 spans ℚ(α) because its elements are in the set 1,α,...

For linear independence: I was thinking of using induction but I'm not sure how I should go about it.

As for P(α) = 0 I am not quite sure what relevance it has. It tells us that
P(α) = a0 + a1α + a2α2 + . . . + an-1αn-1 = 0
Perhaps it helps showing linear independence since we want 1,α,...,αn-1 to be written as
a0 + a1α + a2α2 + . . . + an-1αn-1 = 0 where a0 = a1 = . . . = an-1 = 0
 
Physics news on Phys.org
smoha020 said:
Let α ∈ ℂ be a complex number. Let V = ℚ(α) be the rational vector space spanned by powers of α. That is
ℚ(α) = <1,α,α2,...>.
1) If P(t) is a polynomial of degree n such that P(α) = 0, show that dimℚ(α) is at most n.
Here is my attempt to solve this question. Please give me some feedback/corrections.

Since ℚ(α) = <1,α,α2,...> we know that 1,α,α2,... span ℚ(α).
To show that dimℚ(α) is at most n, we must show that 1,α,α2,..,αn-1 is a basis of ℚ(α). Mistake here.
To show it is a basis,
i) 1,α,α2,..,αn-1 must span ℚ(α)
ii) 1,α,α2,..,αn-1 must be linearly independent.For span:I would say that since 1,α,... spans ℚ(α) then 1,α,...,αn-1 spans ℚ(α) because its elements are in the set 1,α,... This reasoning is not correct.[/color]

For linear independence: I was thinking of using induction but I'm not sure how I should go about it.

As for P(α) = 0 I am not quite sure what relevance it has. It tells us that
P(α) = a0 + a1α + a2α2 + . . . + an-1αn-1 = 0
Perhaps it helps showing linear independence since we want 1,α,...,αn-1 to be written as
a0 + a1α + a2α2 + . . . + an-1αn-1 = 0 where a0 = a1 = . . . = an-1 = 0

Hello smoha. Welcome to MHB.

It is strange that you questioned had not been answered earlier. Probably because you hadn't used LaTeX. Check out the LaTeX forum of our site. It doesn't take much time to get started.

Now.

As for the first mistake, note that a spanning set for a vector space is not necessarily a basis.

The second one is a bit more serious. What you have essentially argued is that a subset of a spanning set of a vector space is a basis.
This is clearly not true.

I can walk you through the proof once you understand these mistakes.
 
I simply do not see the mistakes that you pointed out.

As for the first one, I don't see where I implied that a spanning set of a vector space is a basis.

For the second one, I only said that we must show that this subspace is a basis. I did not say it is a basis.
 
smoha020 said:
I simply do not see the mistakes that you pointed out.

As for the first one, I don't see where I implied that a spanning set of a vector space is a basis.

For the second one, I only said that we must show that this subspace is a basis. I did not say it is a basis.

The line where I pointed out the first mistake reads:

To show that $\dim_{\mathbb Q}\mathbb Q(\alpha)$ is atmost $n$, we need to show that $1, \alpha, \ldots, \alpha^{n-1}$ is basis.

The reason why I called this a mistake is that: To show that $\dim_{\mathbb Q}\mathbb Q(\alpha)$ is atmost $n$, we only need to show that $1, \alpha, \ldots, \alpha^{n-1}$ spans $\mathbb Q(\alpha)$.

May be calling this a mistake was a bit extreme. Forgive me for that.

Now for the second mistake.

You argue that since $1, \alpha, \alpha^2,\ldots$ spans $\mathbb Q(\alpha)$, so does $1,\alpha,\alpha^2,\ldots, \alpha^{n-1}$.

This to me sounds like: Since $S\subseteq V$ spans a vector space $V$, therefore $T\subseteq S$ also spans $V$.

Can you please elaborate on your reasoning so that I can understand your question better.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top