Is 5/((t)(1+4t+4t^2)) the correct solution for my calculus problem?

  • Thread starter Thread starter afcwestwarrior
  • Start date Start date
afcwestwarrior
Messages
453
Reaction score
0
1/ ((t) (1 + 4t + 4t ^2)) + 4 / (1 + 4t + 4t ^2)


= 5/ ((t) (1 + 4t + 4t ^2))
 
Last edited:
Physics news on Phys.org
No, it's not correct. To add these two rational expressions you need to find the least common denominator.
 
Why are you posting these problems in the Calculus and Higher forum? They should go in the Precalculus forum.
 
Because my problem has to do with calculus.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top