Is Absolute Convergence Possible for \sum_{n=1}^{\infty}(-1)^n\frac{n}{5+n}?

  • Thread starter Thread starter nameVoid
  • Start date Start date
  • Tags Tags
    Convergence
nameVoid
Messages
238
Reaction score
0
<br /> \sum_{n=1}^{\infty}(-1)^n\frac{n}{5+n}<br />
alt series tests fails, ratio and root fail is it safe to do a comp test with bn=1 for c=1>0 for abs convergence
 
Last edited:
Physics news on Phys.org
the answer here is no since the limit of an does not approach 0
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top