Is an Ideal of Polynomials Without Constant Terms Finitely Generated?

  • Thread starter Thread starter mesarmath
  • Start date Start date
mesarmath
Messages
8
Reaction score
0
hi,

i was reading about finitely generated ideals

and there was a remark that ideal which consists of polynomials with no constant term, in the polynomial ring Z[x_1,x_2,x_3,,,,,,] , is not finitely generated.

and i can not show it is not finitely generated

any idea?
 
Physics news on Phys.org
This is only true if the ring R=Z[x_1,x_2,x_3,...] has an infinite number of variables. The ring itself is finitely generated as an R-module by the identity {1}. Clearly we can't use {1} to generate the submodule consisting of all polynomials with no constant term though.

The proof that this submodule is not finitely generated hinges on the fact that polynomials have only finitely many non-zero terms. This means that any finite generating set of polynomials must generate only finitely many variables. The submodule has countably many variables, so cannot be finitely generated.
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top