Is Asymmetry Momentum Transfer a Viable Concept for Space Propulsion?

AI Thread Summary
The discussion explores the concept of asymmetry momentum transfer for space propulsion, specifically using a system of robot arms and a cannonball. Two cases are analyzed: in the first, momentum remains unchanged despite oscillations, while in the second, a turbine-like mechanism is proposed to extract kinetic energy from the cannonball, potentially reducing its momentum. However, the conservation of momentum principle indicates that such a system cannot produce net propulsion without violating established physical laws. The thread is ultimately locked due to the discussion of reactionless drives, which contravene the forum's posting policies. The concept remains unviable within the current understanding of physics.
terrance_teoh
Messages
1
Reaction score
0
Momentum Drive
===============
Just playing with some ideas on rocket propulsion in space based on asymmetry momentum transfer.
Any reason why this is not workable? :-p

1.
Let
m1 = 100 kg robot arm at one end of a cylinder;
m2 = 100 kg robot arm at opposite one end of the cylinder;
m3 = 10 kg canon ball;

2.
Case 1:
=======
Let m1 and m2 throw the canon ball between them.
The gain in movement is zero, although there should be some oscillation:
Mass Velocity Momentum Duration Distance Total Distance
==== ======== ======== ======== ======== ==============
i
m1 = 100 kg; v1 = 0 m/s; p1 = 0 kg m/s; t = 0 s; d = 0 m; d_sum = 0 m
m2 = 100 kg; v2 = 0 m/s; p2 = 0 kg m/s;
m3 = 10 kg; v3 = 0 m/s; p3 = 0 kg m/s;

ii
m1 = 100 kg; v1 = -0.5 m/s; p1 = -50 kg m/s; t = 10 s; d = -5 m; d_sum = -5 m
m2 = 100 kg; v2 = -0.5 m/s; p2 = -50 kg m/s;
m3 = 10 kg; v3 = 10 m/s; p3 = 100 kg m/s;

iii
m1 = 100 kg; v1 = 0 m/s; p1 = 0 kg m/s; t = 0 s; d = 0 m; d_sum = -5 m
m2 = 100 kg; v2 = 0 m/s; p2 = 0 kg m/s;
m3 = 10 kg; v3 = 0 m/s; p3 = 0 kg m/s;

iv
m1 = 100 kg; v1 = 0.5 m/s; p1 = 50 kg m/s; t = 10 s; d = 5 m; d_sum = 0 m
m2 = 100 kg; v2 = 0.5 m/s; p2 = 50 kg m/s;
m3 = 10 kg; v3 = -10 m/s; p3 = -100 kg m/s;

v
m1 = 100 kg; v1 = 0 m/s; p1 = 0 kg m/s; t = 0 s; d = 0 m; d_sum = 0 m
m2 = 100 kg; v2 = 0 m/s; p2 = 0 kg m/s;
m3 = 10 kg; v3 = 0 m/s; p3 = 0 kg m/s;


3.
Case 2:
=======
Let m1 and m2 throw the canon ball between them.
But this time place a revolving door like a turbine; when the cannon ball goes only from m1 to m2.
The idea is to drain the kinetic energy (1/2 mv^2) from the canon ball.
Let us assume we can take out about 51% of that energy.
(http://en.wikipedia.org/wiki/Wind_turbine#Efficiency)
This should slow down the cannon ball, hence reducing its momentum when it hits m2.
From the calculations below we can see that it is possible to convert energy to velocity and still recycle the mass being used for propulsion.

Mass Velocity Momentum Duration Distance Total Distance Energy
==== ======== ======== ======== ======== ============== ======
i
m1 = 100 kg; v1 = 0 m/s; p1 = 0 kg m/s; t = 0 s; d = 0 m; d_sum = 0 m
m2 = 100 kg; v2 = 0 m/s; p2 = 0 kg m/s;
m3 = 10 kg; v3 = 0 m/s; p3 = 0 kg m/s;

ii
m1 = 100 kg; v1 = -0.5 m/s; p1 = -50 kg m/s; t = 10 s; d = -5 m; d_sum = -5 m
m2 = 100 kg; v2 = -0.5 m/s; p2 = -50 kg m/s;
m3 = 10 kg; v3 = 10 m/s; p3 = 100 kg m/s;

e3 = 500 kg m2/s2

iii
m1 = 100 kg; v1 = -0.5 m/s; p1 = -50 kg m/s; t = 0 s; d = 0 m; d_sum = -5 m
m2 = 100 kg; v2 = -0.5 m/s; p2 = -50 kg m/s;
m3 = 10 kg; v3 = 7 m/s; p3 = 70 kg m/s;

e3 = 245 kg /s2;
Energy Drain = -255 kg m2/s2 (about 51%)

iv
m1 = 100 kg; v1 = -0.15 m/s; p1 = -15 kg m/s; t = 0 s; d = 0 m; d_sum = -5 m
m2 = 100 kg; v2 = -0.15 m/s; p2 = -15 kg m/s;
m3 = 10 kg; v3 = 0 m/s; p3 = 0 kg m/s;

v
m1 = 100 kg; v1 = 0.35 m/s; p1 = 35 kg m/s; t = 10 s; d = 3.5 m; d_sum = -1.5 m
m2 = 100 kg; v2 = 0.35 m/s; p2 = 35 kg m/s;
m3 = 10 kg; v3 = -10 m/s; p3 = -100 kg m/s;

vi
m1 = 100 kg; v1 = -0.15 m/s; p1 = -15 kg m/s; t = 0 s; d = 0 m; d_sum = -1.5 m
m2 = 100 kg; v2 = -0.15 m/s; p2 = -15 kg m/s;
m3 = 10 kg; v3 = 0 m/s; p3 = 0 kg m/s;

Note:
=====
p = mv;
e = 0.5mv^2;
 
Physics news on Phys.org
Momentum is always conserved. It seems likely that you have ignored the momentum going into the revolving door.
 
terrance_teoh said:
Just playing with some ideas on rocket propulsion in space based on asymmetry momentum transfer.
Any reason why this is not workable? :-p

Conservation of momentum. Reactionless drives are similar to perpetual motion/free energy devices in that it requires breaking known scientific laws. That means it violates PF posting policy, and because of this I am locking the thread.

Please see the Terms and Guidelines page for more information on what is and isn't allowed here on the site.
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Thread 'Beam on an inclined plane'
Hello! I have a question regarding a beam on an inclined plane. I was considering a beam resting on two supports attached to an inclined plane. I was almost sure that the lower support must be more loaded. My imagination about this problem is shown in the picture below. Here is how I wrote the condition of equilibrium forces: $$ \begin{cases} F_{g\parallel}=F_{t1}+F_{t2}, \\ F_{g\perp}=F_{r1}+F_{r2} \end{cases}. $$ On the other hand...
Back
Top