Is Author Wrong? Solving a Homework Equation

  • Thread starter Thread starter foo9008
  • Start date Start date
  • Tags Tags
    Homework
foo9008
Messages
676
Reaction score
4

Homework Statement


is the author wrong ? i was told that the f(x) = 0.5(a_0) +Σ(a_n)cos (nπx / L ) ... but , in the example(photo2) , the author ignore the L , which the author gave f(x) = 0.5(a_0) +Σ(a_n)cos (nπx ) +...

Homework Equations

The Attempt at a Solution


P/ s : i have tried to make some correction beside the working , is it correct ?[/B]
 

Attachments

  • 150.jpg
    150.jpg
    53.8 KB · Views: 419
  • 153.jpg
    153.jpg
    18.8 KB · Views: 426
  • 1540002.jpg
    1540002.jpg
    33.8 KB · Views: 386
  • 1550002.jpg
    1550002.jpg
    17.9 KB · Views: 372
Last edited:
Physics news on Phys.org
Don't know what photo 2 is, but in 154002 the author carefully uses L = 2.
And in 1550002 L is ##\pi##
 
BvU said:
Don't know what photo 2 is, but in 154002 the author carefully uses L = 2.
And in 1550002 L is ##\pi##
So, the author is wrong, right? In155002, the L should be 2, right??
 
If 150 says ##n\pi\x\over L## and 154 says ##n\pi\over 2##, doesn't that mean the author did take L = 2 ?

As for 155, I'm not so sure: does the definition in your book agree with

The http://www.math24.net/definition-of-fourier-series.html of the function f(x) is given by
$$f(x)={a_0\over 2}+\sum_{n=1}^\infty \{a_n\cos nx+b_n\sin nx\}$$
where the Fourier coefficients ##a_0##, ##a_n##, and ##b_n## are defined by the integrals$$
a_0={1\over \pi} \int _{−\pi}^\pi f(x)\, dx,\quad a_n={1\over \pi} \int _{−\pi}^\pi f(x)\cos nx\,dx,\quad b_n{1\over \pi} \int _{−\pi}^\pi f(x)\sin nx\,dx$$
 
BvU said:
If 150 says ##n\pi\x\over L## and 154 says ##n\pi\over 2##, doesn't that mean the author did take L = 2 ?

As for 155, I'm not so sure: does the definition in your book agree with

The http://www.math24.net/definition-of-fourier-series.html of the function f(x) is given by
$$f(x)={a_0\over 2}+\sum_{n=1}^\infty \{a_n\cos nx+b_n\sin nx\}$$
where the Fourier coefficients ##a_0##, ##a_n##, and ##b_n## are defined by the integrals$$
a_0={1\over \pi} \int _{−\pi}^\pi f(x)\, dx,\quad a_n={1\over \pi} \int _{−\pi}^\pi f(x)\cos nx\,dx,\quad b_n{1\over \pi} \int _{−\pi}^\pi f(x)\sin nx\,dx$$
no , as you can see it 150 , the author gave $$f(x)={a_0\over 2}+\sum_{n=1}^\infty \{a_n\cos nπx / L+b_n\sin nπx\/L}$$
 

Attachments

  • 150.jpg
    150.jpg
    56.1 KB · Views: 394
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top