dori1123
- 11
- 0
Let C([0,1]) be the collection of all complex-valued continuous functions on [0,1].
Define d(f,g)=\int\limits_0^{1}\frac{|f(x)-g(x)|}{1+|f(x)-g(x)|}dx for all f,g \in C([0,1])
C([0,1]) is an invariant metric space.
Prove that C([0,1]) is a topological vector space
Define d(f,g)=\int\limits_0^{1}\frac{|f(x)-g(x)|}{1+|f(x)-g(x)|}dx for all f,g \in C([0,1])
C([0,1]) is an invariant metric space.
Prove that C([0,1]) is a topological vector space