Is Calculating Only the Fourier Sine Series Sufficient for f(x) = x^3 on [-1,1]?

mbud
Messages
6
Reaction score
0

Homework Statement



Determine a general Fourier series representation for f(x) = x^3 -1<x<1

Homework Equations


The Attempt at a Solution



May seem like a stupid Q, but would i have to calculate a0, an, bn or since i know that x^3 is an odd function, could jump straight into calculating the Fourier sine series for odd functions. Would that give me a general representation?
 
Last edited:
Physics news on Phys.org
looking at it one can directly jump to Fourier sine series
if you calculate all the terms initially assuming the complete Fourier representation you will find that coefficients associated with the even terms will go to zero.
so its more like using a known result.
 
Yes, you can restrict yourself to sines.

If you want you can explicitly check it, with an argument along the lines of
\int_{-1}^1 \cos(x) x^3 dx = \int_{-1}^0 \cos(x) x^3 dx + \int_0^1 \cos(x) x^3 dx = \int_0^1 \cos(-x) (-x)^3 dx + \int_0^1 \cos(x) x^3 dx = 0
because cos(-x) (-x)3 = - cos(x) x3
 
thanks.
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top