Is \displaystyle{\sin ^2}a = \frac{{1 - \cos 2a}}{2} True?

  • Thread starter Thread starter Hernaner28
  • Start date Start date
Hernaner28
Messages
261
Reaction score
0
Is this true?:

\displaystyle{\sin ^2}a = \frac{{1 - \cos 2a}}{2}


Because I've seen it in a book but isn't that

\displaystyle\sin a = \sqrt {1 - {{\cos }^2}a}
then:
\displaystyle{\sin ^2}a = 1 - {\cos ^2}a

and NOT:
\displaystyle{\sin ^2}a = \frac{{1 - \cos 2a}}{2}

thanks!
 
Physics news on Phys.org
Hernaner28 said:
Is this true?:

\displaystyle{\sin ^2}a = \frac{{1 - \cos 2a}}{2}Because I've seen it in a book but isn't that

\displaystyle\sin a = \sqrt {1 - {{\cos }^2}a}
That would be
$$ sin(a) = \pm \sqrt{1 - cos^2(a)}$$
Hernaner28 said:
then:
\displaystyle{\sin ^2}a = 1 - {\cos ^2}a

and NOT:
\displaystyle{\sin ^2}a = \frac{{1 - \cos 2a}}{2}

thanks!

They are both true.

Start with cos(2a) = cos2(a) - sin2(a)
= 1 - sin2(a) - sin2(a) = 1 - 2sin2(a)

So cos(2a) = 1 - 2sin2(a)

A little rearrangenment yields the identity you're asking about.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top