daster
I was messing around and decided to prove Euler's 'formula' using a method that doesn't involve power series. Here's how I did it:
z=\cos\theta + i \sin\theta
\frac{dz}{d\theta} = -\sin\theta + i\cos\theta
i\frac{dz}{d\theta} = -i\sin\theta + i^{2}\cos\theta = -i\sin\theta - \cos\theta = -(\cos\theta+i\sin\theta) = -z
-i\int \frac{1}{z} \; dz = \int \; d\theta
-i \log|z| = \theta + C
When \theta=0[/tex], z=1, so C=0. Now:<br /> <br /> \log|z| = \frac{-\theta}{i}<br /> <br /> z=e^{\frac{-\theta}{i}}<br /> <br /> <img src="https://cdn.jsdelivr.net/joypixels/assets/8.0/png/unicode/64/1f615.png" class="smilie smilie--emoji" loading="lazy" width="64" height="64" alt=":confused:" title="Confused :confused:" data-smilie="5"data-shortname=":confused:" />
z=\cos\theta + i \sin\theta
\frac{dz}{d\theta} = -\sin\theta + i\cos\theta
i\frac{dz}{d\theta} = -i\sin\theta + i^{2}\cos\theta = -i\sin\theta - \cos\theta = -(\cos\theta+i\sin\theta) = -z
-i\int \frac{1}{z} \; dz = \int \; d\theta
-i \log|z| = \theta + C
When \theta=0[/tex], z=1, so C=0. Now:<br /> <br /> \log|z| = \frac{-\theta}{i}<br /> <br /> z=e^{\frac{-\theta}{i}}<br /> <br /> <img src="https://cdn.jsdelivr.net/joypixels/assets/8.0/png/unicode/64/1f615.png" class="smilie smilie--emoji" loading="lazy" width="64" height="64" alt=":confused:" title="Confused :confused:" data-smilie="5"data-shortname=":confused:" />
Last edited by a moderator: