MHB Is Every Homomorphism of a Field to a Ring One-to-One or Null?

  • Thread starter Thread starter Fantini
  • Start date Start date
  • Tags Tags
    Field Ring
Fantini
Gold Member
MHB
Messages
267
Reaction score
0
Good afternoon! I wasn't able to get the necessary grade in abstract algebra and now I'm redoing many exercises and I would like some correction. All help is appreciated! (Smile)

Here is the question:

Show that every homomorphism of a field to a ring is one-to-one or null.

Let $\phi: F \to R$ be a homomorphism from a field $F$ to a ring $R$. Assume that $\phi \neq 0$. We have that $\phi(0_F) = 0_R$. Suppose that $\phi (a) = \phi(b)$. Since $F$ is a field, we will have $\phi(a-b) = 0_R$ if and only if $a-b=0$ and therefore $a=b$.

Cheers! (Yes)
 
Physics news on Phys.org
you're "just" missing it. what you want to PROVE is:

$\phi(x) = 0_R \iff x = 0_F$ if $\phi$ is not the 0-map.

you can't use this in the proof itself (the "if" part is easy).

now if $\phi(a) = \phi(b)$ then $\phi(a) - \phi(b) = 0_R$, and since $\phi$ is a ring-hmomorphism:

$\phi(a-b) = 0_R$ up to here, you're good. now we need to prove what i stated above.

well the set $\{x \in F: \phi(x) = 0_R\}$ is the kernel of $\phi$ and kernels are ideals (in rings).

but a field F only has two ideals, F and {0F}. if the kernel is F, $\phi$ is the 0-map. since we are assuming $\phi$ is not the 0-map, the kernel is {0F}. NOW we know that:

$a-b = 0_F$ so that $a = b$.
 
I was close! Thanks Deveno! I will pay more attention next time. The kernel is a neat way to conclude the argument (don't know if it's the only one, but I definitely liked the idea).
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top