As I understand it, Felix Klein sought to classify geometries with respect to what groups G that respected the structure of the given space X. Lately i read in an article on "the history of connections" by Freeman Kamielle that Cartan wished to generalize this notion. Is it correct to think of Fibre bundles ##(E, \pi, B, F)##= (whole space, projection, base, typical fibre) with a structure group G as the generalization that Cartan came up with? I.e. the whole space E does no longer respect the action of G, but each fibre respects it. Is that the correct understanding?(adsbygoogle = window.adsbygoogle || []).push({});

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Is Fibre Bundles Cartan's Generalization of Klein's Erlagen Program?

**Physics Forums | Science Articles, Homework Help, Discussion**