nhrock3
- 403
- 0
i need to prove that \frac{1}{\sqrt{x}} is not uniformly continues in (0,1)
for epsilon=0.5
|\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{y}}|=|]\frac{\sqrt{y}-\sqrt{x}}{\sqrt{xy}}\frac{\sqrt{y}+\sqrt{x}}{\sqrt {y}+\sqrt{x}}|=|\frac{y-x}{(\sqrt{y}-\sqrt{x})\sqrt{xy}}|
i need to prove that the above exprseesion bigger then 0.5
but i don't know what x and y to choose
?
for epsilon=0.5
|\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{y}}|=|]\frac{\sqrt{y}-\sqrt{x}}{\sqrt{xy}}\frac{\sqrt{y}+\sqrt{x}}{\sqrt {y}+\sqrt{x}}|=|\frac{y-x}{(\sqrt{y}-\sqrt{x})\sqrt{xy}}|
i need to prove that the above exprseesion bigger then 0.5
but i don't know what x and y to choose
?