Schnellmann said:
Summary:: Conflicting opinions on videos I’ve watched
I’ve watched a few videos recently that explained that gravity is not a force rather it is caused by time dilation because clocks tick slower closer to mass. Objects will follow a geodesic through spacetime and require a force to move them away from a geodesic - so the surface of the Earth is accelerating everything on the surface. If you fall into a hole you don’t experience a gravitational force pulling you down rather you feel the removal of the force that was pushing you away from your geodesic. I then watched a video on quantum gravity that said gravity was a force (although almost infinitely weaker than the other known forces) and the theoretical particle is the graviton.
So which is true?
On the subject of gravity not being a force - if we are being constantly accelerated by standing on the surface of the Earth doesn’t that require some energy? If yes where does that energy come from?
In Newtonian theory, gravity is a force. When Einstein created the theory of special relativity, he observed that the concept of Newtonian gravity was not consistent with special relativity. Einstein was concerned by this - there is now plenty of evidence that his special theory of relativity was correct. Then and now, though, the issue of how the special theory could possibly incorporate gravity remains.
There were several possibilities, but eventually Einstein came up with what is now called General Relativity as a way to incorporate gravity into the framework of special relativity.
You've already given a good lay summary of how GR works, congratulations on doing your research. I'll address a few things you haven't mentioned, though.
In order to incorporate gravity into special relativity, Einstein considered what the reference frame of an accelerating rocket or elevator would act like according to the theory. This is commonly called "Einstein's elevator". The motivation for considering the two cases, the force one feels in an accelerating elevator, and the force one feels due to gravity, as being equivalent is usually called "The Principle of Equivalence". There are several flavors of how the principle of equivalence works, this is just a short and not very detailed summary.
One of the predictions that comes out of a detailed, formal, analysis of Einstein's elevator is that clocks on the floor of Einstein's elevator do not tick at the same rate as clocks on top of the elevator. This effect is not compatible with the idea of considering gravity as "just a force". Forces do not, by themselves, cause clocks to tick at different rates. Now, it is perhaps possible to view gravity as a force plus other effects that cannot be fit into the mold of a "force", effects that would cause clocks to tick at different rates. However, I'm not aware of any such approach that has been published, and in any event it is not how we currently view and use the theory of General Relativity in practice. Einstein thought for quite a long time on the matter, and he eventually came up with a full theory of how he thought gravity could work in a manner that was compatible with special relativity, a theory that we now call "General Relativity".
Experimental results, such as the Pound-Rebka experiment, illustrate that the predictions that General Relativity makes are consistent with experiment, while Newton's theories of gravity fall short. The differences are small, but measurable with sufficiently precise and careful experiments.
Unfortunately, while this is all well and good as far as it goes, it is difficult to proceed further with just popularizations. I don't think it is possible to get a really good understanding of all aspects of General Relativity from the popularizations you have mentioned, though they are good start. In particular, I'm not aware of any way to popularize the treatment of energy in General relativity. There are some advanced graduate level treatments, but reducing them to a popular level has not, as far as I know, been done. Of course, I don't know everything, but I haven't heard of such a treatment.
What I can say though is that it doesn't take any energy to keep an object stationary on the surface of the Earth. It turns out that General Relativity has many different notions of energy - I would reagard ADM, Bondi, and Komar energy as being the "big three", though there are others. All of the formulations of energy in GR that I've mentioned are consistent with the idea that it doesn't take any work to hold an object at rest on the Earth's surface.