Is H ∩ K a Subgroup of G with Subgroups H and K?

  • Thread starter Thread starter kathrynag
  • Start date Start date
  • Tags Tags
    Group Proof
kathrynag
Messages
595
Reaction score
0

Homework Statement



Let G be a group with subgroups H and K. Prove HintersectK is a subgroup.

Homework Equations





The Attempt at a Solution


G is a group with subgroups H and K. Then H and K are closed, have identity elements in G and have inverses.
HintersectK is a subgroup because H and K must satisfy the same properties of G.
 
Physics news on Phys.org
let a,b \epsilon H and a,b \epsilon K.Then a*b \epsilon H and a*b \epsilon K.Let a \epsilon H and a \epsilon K.Then a^{-1} \epsilon H and a^{-1} \epsilon K.
 
that makes sense
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top