Chantry
- 26
- 0
Can someone explain if this is true or if there's anything wrong with the following logic?
e^ix = cos(x) + isin(x)
Let x = pi/2 + 2npi
Then,
e^ix = i
Take both sides to the exponent i,
e^-x = i^i
e^-(pi/2 + 2npi) = i^i
But, e^(pi/2 + 2npi) has infinite different values.
I've been looking around on the internet and I can only find the typical e^(-pi/2) solution. Is it just that mathematicians have just decided to define it to be that value? Even wolfram alpha spits out only one value. Is it just as correct to say that i^i = e^-(5pi/2) for example?
e^ix = cos(x) + isin(x)
Let x = pi/2 + 2npi
Then,
e^ix = i
Take both sides to the exponent i,
e^-x = i^i
e^-(pi/2 + 2npi) = i^i
But, e^(pi/2 + 2npi) has infinite different values.
I've been looking around on the internet and I can only find the typical e^(-pi/2) solution. Is it just that mathematicians have just decided to define it to be that value? Even wolfram alpha spits out only one value. Is it just as correct to say that i^i = e^-(5pi/2) for example?
Last edited: