Is it Possible for x^2 to Exceed 900?

Click For Summary
SUMMARY

The discussion centers around the inequality \(x^2 > 900\) and how to interpret it correctly. Participants clarify that the correct interpretation leads to two cases: \(x > 30\) or \(x < -30\). The expression \(\sqrt{900} = 30\) is emphasized as the principal square root, and the importance of handling inequalities with care, especially regarding negative values, is highlighted. The conclusion is that \(x\) must satisfy either of the two derived conditions to be valid.

PREREQUISITES
  • Understanding of basic algebraic inequalities
  • Knowledge of square roots and absolute values
  • Familiarity with mathematical notation and LaTeX
  • Ability to analyze and interpret mathematical expressions
NEXT STEPS
  • Study the properties of inequalities in algebra
  • Learn about the implications of absolute values in inequalities
  • Explore graphical representations of quadratic functions
  • Practice solving inequalities involving square roots
USEFUL FOR

Students, educators, and anyone interested in mastering algebraic inequalities and their graphical interpretations.

mark2142
Messages
228
Reaction score
42
Homework Statement
Suppose ##x^2 > 900##
Relevant Equations
What will be x?
We can also write a general inequality ##x^2>a## where a is a number.
If ##x^2= a##, then ##x= \pm \sqrt a## which means ##x= \sqrt a## or ##-\sqrt a##.
But in this case i don’t think it will be ##x > \pm \sqrt a## because if we take ##0## , it’s greater than a negative but in the original inequality ##0 < a## , a positive number.
 
Last edited:
Physics news on Phys.org
How about ##|x|## ?
 
  • Like
Likes   Reactions: vela
mark2142 said:
If ##x^2= a##, then ##x= \pm \sqrt a## which means ##x= \sqrt a## or ##-\sqrt a##.
But in this case i don’t think it will be ##x > \pm \sqrt a## ...
That's true. ##x^2 > a \Rightarrow x > a## or ##x \ ? -a##?
 
mark2142 said:
Homework Statement:: Suppose ##x^2 > 900##
Relevant Equations:: What will be x?

We can also write a general inequality ##x^2>a## where a is a number.
If ##x^2= a##, then ##x= \pm \sqrt a## which means ##x= \sqrt a## or ##-\sqrt a##.
But in this case i don’t think it will be ##x > \pm \sqrt a## because if we take ##0## , it’s greater than a negative but in the original inequality ##0 < a## , a positive number.
##x > \pm \sqrt a## is ambiguous and shouldn’t be used.

For example, if ##a=900## then one possible interpretation of ##x > \pm \sqrt a## is that it is satisfied by ##x=1##, because ##1>-30##, which is clearly wrong does not satisfy the original inequality##x^2 \gt a##.

Edited.
 
Last edited:
  • Like
Likes   Reactions: mark2142
mark2142 said:
But in this case i don’t think it will be ##x > \pm \sqrt a## because if we take ##0## , it’s greater than a negative but in the original inequality ##0 < a## , a positive number.
Good catch. When you are dealing with inequalities, you have to be careful about minus signs and negative numbers. You should handle these two cases separately.
Case 1: ##x \gt \sqrt a##
Case 2: ##x \lt -\sqrt a##
 
  • Like
Likes   Reactions: chwala and mark2142
Dear @mark2142 ,

Are you aware that if ## a > b ##, then it follows that ## - a < - b## ?

I.e. if you multiply left and right of an inequality with a negative number : the inequality sign flips ...

##\ ##
 
  • Like
Likes   Reactions: chwala and mark2142
Steve4Physics said:
##x > \pm \sqrt a## is ambiguous and shouldn’t be used.

For example, if ##a=900## then one possible interpretation of ##x > \pm \sqrt a## is that it is satisfied by ##x=1##, because ##1>-30##, which is clearly wrong does not satisfy the original inequality##x^2 \gt a##.

Edited.
Yes! ##x> - \sqrt a## is wrong and then ##x^2 > a## is not true.
But how do we reach to the solution?
(I don’t want to solve ##x^2 -a > 0##.)
 
FactChecker said:
Good catch. When you are dealing with inequalities, you have to be careful about minus signs and negative numbers. You should handle these two cases separately.
Case 1: ##x \gt \sqrt a##
Case 2: ##x \lt -\sqrt a##
How have you reached to the solution?
( sorry for late response! )
 
BvU said:
How about ##|x|## ?
What about it?
 
  • #10
mark2142 said:
Yes! If ##x> - \sqrt a## then ##x^2 > a## is not true.
But how do we reach to the solution?
(I don’t want to solve ##x^2 -a > 0##.)
Come again ? In post #1 you ask ' what is ##x## if ##x^2>900## ' and now you don't want to solve the equivalent problem ?

How about making a plot, then ?

1679052738213.png

##\ ##
 
  • Like
Likes   Reactions: chwala, MatinSAR, scottdave and 2 others
  • #11
mark2142 said:
What about it?
##x^2 > 900\ \Leftrightarrow \ |x|>\sqrt{900}##
 
  • Like
Likes   Reactions: MatinSAR
  • #12
BvU said:
Come again ? In post #1 you ask ' what is ##x## if ##x^2>900## ' and now you don't want to solve the equivalent problem ?

How about making a plot, then ?

View attachment 323730
##\ ##
I thought maybe there was a fast algebraic method. So tell me about the graph.You plotted a graph between ##x## and ##x^2## by taking different values of x. By graph it’s clear ##x^2> 900## for ##x <-30## and ##x>30##.
 
  • #13
mark2142 said:
I thought maybe there was a fast algebraic method
There is:
BvU said:
##x^2 > 900\ \Leftrightarrow \ |x|>\sqrt{900}##
##\Leftrightarrow \ x>30\ \lor \ -x<-30 ##

[edit] Oops ! see #16
 
Last edited:
  • #14
mark2142 said:
I thought maybe there was a fast algebraic method.
Not really. The best (only?) way is to consider two cases and see where each case takes you.
 
  • #15
FactChecker said:
Not really. The best (only?) way is to consider two cases and see where each case takes you.
Ok! Thanks everyone. Bye!
 
  • #16
BvU said:
##\Leftrightarrow \ x>30\ \lor \ -x<-30 ##
##\Leftrightarrow \ x>30\ \lor \ x<-30 ##
 
  • Like
Likes   Reactions: Mark44
  • #17
Emphasis added...
mark2142 said:
So tell me about the graph. You plotted a graph between ##x## and ##x^2## by taking different values of x. By graph it’s clear ##x^2> 900## for ##x <-30## and ##x>30##.
  1. @BvU provided a graph of ##y = x^2## and a graph of ##y = 900## to demonstrate visually the intervals for which ##x^2 > 900##.
  2. The appropriate conjunction above is or. It's not possible for a value of x to be both less than -30 and greater than 30.
 
  • Like
  • Informative
Likes   Reactions: scottdave and mark2142
  • #18
FactChecker said:
Not really. The best (only?) way is to consider two cases and see where each case takes you.
I think the OP is asking how you come up with the two cases in the first place. That is, how do you know it's supposed to be ##x < -\sqrt{a}## instead of ##x > -\sqrt{a}## other than simply memorizing?

The easiest way is using what @BvU has hinted at. Since ##\sqrt{x^2} = \lvert x \rvert##, after taking the square root of the original inequality, you have ##\lvert x \rvert > 30##. Then the definition of the absolute value leads to the two cases
$$ \lvert x \rvert > 30 \quad \Rightarrow \quad
\begin{cases}
x > 30, & x>0 \\
-x > 30, & x<0
\end{cases}$$ Negating the latter case gives you ##x < -30##.
 
  • Informative
Likes   Reactions: mark2142 and scottdave
  • #19
vela said:
I think the OP is asking how you come up with the two cases in the first place. That is, how do you know it's supposed to be ##x < -\sqrt{a}## instead of ##x > -\sqrt{a}## other than simply memorizing?
One way that works in many such inequalities is to try some cases in each section of the reals in question: x=0 and x=-1000 and see which ones work.
 
  • #20
vela said:
The easiest way is using what @BvU has hinted at. Since x2=|x|, after taking the square root of the original inequality, you have |x|>30.
Thank you for clarifying but what is ##\sqrt 900##? Doesn't the inquality ##x^2 > 900## becomes ##|x| > \pm 30## after square rooting?
 
  • Sad
Likes   Reactions: PeroK
  • #21
mark2142 said:
Thank you for clarifying but what is ##\sqrt 900##? Doesn't the inquality ##x^2 > 900## becomes ##|x| > \pm 30## after square rooting?
##\sqrt{900} = 30##
If ##x^2 > 900## then ##|x| > 30##

The expression ##\sqrt{900}## represents the principal (i.e., positive) square root of 900. It's a common mistake that we see a lot where people think that the square root of a number is plus/minus some quantity. That is erroneous.
 
  • Like
Likes   Reactions: chwala, mark2142 and vela
  • #22
Mark44 said:
##\sqrt{900} = 30##
If ##x^2 > 900## then ##|x| > 30##

The expression ##\sqrt{900}## represents the principal (i.e., positive) square root of 900. It's a common mistake that we see a lot where people think that the square root of a number is plus/minus some quantity. That is erroneous.1
https://math.stackexchange.com/a/547831/1109500
Is this what you mean? That we choose ##\sqrt x## to be a positive square root because it helps in solving inequalities and equations. And for that to be consistent all the way we want ##\sqrt {x^2}= |x| ## to be true.
Then it will be like @vela said. ##|x| >30## and by definition of absolute values we have x<-30 or x>+30.
 
  • #23
mark2142 said:
Yes
mark2142 said:
That we choose ##\sqrt x## to be a positive square root because it helps in solving inequalities and equations.
No, we choose ##\sqrt x ## to be the positive square root of x so that the square root operation will be a function. A function has only a single value. However, in more advanced mathematics the concept of multi-valued or vector-valued functions comes up.
mark2142 said:
And for that to be consistent all the way we want ##\sqrt {x^2}= |x| ## to be true.
I don't think that's the right explanation. By definition, |x| equals x if x is is nonnegative, and equals -x if x happens to be negative. With our convention, ##\sqrt{x^2}## has the same value as |x|.
mark2142 said:
Then it will be like @vela said. ##|x| >30## and by definition of absolute values we have x<-30 or x>+30.
 
  • Like
Likes   Reactions: MatinSAR, vela and SammyS
  • #24
mark2142 said:
https://math.stackexchange.com/a/547831/1109500
Is this what you mean? That we choose ##\sqrt x## to be a positive square root because it helps in solving inequalities and equations. And for that to be consistent all the way we want ##\sqrt {x^2}= |x| ## to be true.
Then it will be like @vela said. ##|x| >30## and by definition of absolute values we have x<-30 or x>+30.
$$(-31)(-31) = (31)(31) > 900$$$$(-29)(-29) = (29)(29) < 900$$$$-31<-30<-29< 0 < 29 < 30 < 31$$
 
Last edited:
  • Like
Likes   Reactions: chwala
  • #25
Mark44 said:
don't think that's the right explanation. By definition, |x| equals x if x is is nonnegative, and equals -x if x happens to be negative. With our convention, x2 has the same value as |x|.
When you say ## \sqrt {x^2}= |x|## is this because ## \sqrt y## is taken as positive root where ##y=x^2## ? (And |x| is already positive. So both becomes equal).
Like ## \sqrt {(-2)^2}= \sqrt 4 = +2##
And ## \sqrt {2^2}= \sqrt 4 = +2##
So, ## \sqrt x^2 = |x|## for all x.
 
  • #26
mark2142 said:
So, ## \sqrt x^2 = |x|## for all x.
Exactly.
 
  • Like
Likes   Reactions: mark2142
  • #27
mark2142 said:
When you say ## \sqrt {x^2}= |x|## is this because ## \sqrt y## is taken as positive root where ##y=x^2##?
It doesn't really have anything to do with ##y = x^2##.
If x < 0, then ##\sqrt{x^2} = \sqrt{(-x)^2} = -x##, which is a positive number.
If ##x \ge 0## then ##\sqrt{x^2} = x##, which is nonnegative.
Therefore, ##\sqrt{x^2}## produces the exact same result as |x|.
mark2142 said:
(And |x| is already positive. So both becomes equal).
Like ## \sqrt {(-2)^2}= \sqrt 4 = +2##
And ## \sqrt {2^2}= \sqrt 4 = +2##
So, ## \sqrt x^2 = |x|## for all x.
Yes, with this correction. You wrote ## \sqrt x^2## in the last line. I think I understand what you meant, but that wasn't consistent with the LaTeX that you wrote.
## \sqrt x^2## is rendered as if you had written ##(\sqrt x)^2##, which is defined only for ##x \ge 0## if the intention is for the real-valued square root.
The corrected version of that last line is ##\sqrt{x^2} = |x|##. In other words, you need braces around the x^2 part. So there is a difference between taking the square root first and then squaring the result, versus squaring x first, then taking the square root of that result.
 
Last edited:
  • #28
PeroK said:
Exactly.
Ok. Great. And the fact that ## (-2)^{2*1/2}= -2## is true but we ignore it and say ## (-2)^{2*1/2}= |-2|=2##. Yes?
 
  • #29
mark2142 said:
Ok. Great. And the fact that ## (-2)^{2*1/2}= -2## is true but we ignore it and say ## (-2)^{2*1/2}= |-2|=2##. Yes?
No.
 
  • #30
mark2142 said:
Ok. Great. And the fact that ## (-2)^{2*1/2}= -2## is true but we ignore it and say ## (-2)^{2*1/2}= |-2|=2##. Yes?
No. The usual rules for exponents don't apply when you raise negative numbers to some power. The rule you apparently are using is ##(a^b)^c = a^{bc}## requires that a > 0.
For the expression you started with, the expressions ##((-2)^2)^{1/2}## and ##(-2)^{2 * 1/2}## produce different results, namely 2 and -2, respectively.
 
  • Like
  • Informative
Likes   Reactions: mark2142 and PeroK

Similar threads

Replies
6
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
10
Views
2K
Replies
3
Views
2K