Standard quantum theory does of course answer this question, in the sense that it does indicate how one must think about this question. As was shown by Bohr, the energy-momentum description and the space-time description are complementary. One cannot mix up these concepts without restriction and without regard to the experimental conditions. As I've described in my previous post, the electron which passes through the slit is in a superposition of momentum states. Since inititially it had a definite momentum, how must we think about its subsequent evolution into a superposition, with regard to conservation laws? The answer is that the evolution of a momentum state into a superposition of momentum states represents the possibility of exchange of momentum with the apparatus defining the experimental conditions. Now Gerenuk's question is, "what is the actual momentum of the particle after it passes the slit?". Here it is extremely important to realize that we are posing a question about the 'interior' of an inherently indivisible quantum process, and any attempt of trying to assign a definite momentum to the electron before it reaches the photographic plate will require a change in the experimental conditions, and in that case we are no longer studying the same process, since any change in the experimental conditions will introduce new possibilities of interaction between the electron and the apparatus, and the description of the experiment will be different, in the sense of complementarity.