1MileCrash
- 1,338
- 41
Homework Statement
t^2y' + 2ty - y^3 = 0
Homework Equations
The Attempt at a Solution
y'+(2/t)y = (1/t^2)y^3
Let v = y^-2; then dv/dy = -2y^-3(dy/dt) and (dy/dt)=(-1/2)y^3(dv/dy)
Making that sub we have:
(-1/2)y^3(dv/dy)+(2/t)y = (1/t^2)y^3
(dv/dy)+(-4/t)y^-2 = (-2/t^2)
(dv/dy)+(-4/t)v = (-2/t^2)
My integrating factor is t^-4, giving me
v = (2/5)t^-1 + Ct^4
y^-2 = (2/5)t^-1 + Ct^4
y^2 = ((2/5)t^-1 + Ct^4)^-1
y= (+/-) (((2/5)t^-1 + Ct^4)^-1)^(1/2)
Wolfram gives something pretty irreconcilable.