Is NH Always a Normal Subgroup of G When N and H Are Normal Subgroups?

  • Thread starter Thread starter Bleys
  • Start date Start date
  • Tags Tags
    Normal
Bleys
Messages
74
Reaction score
0
There was an exercise in a book to prove that given N is a normal subgroup of a group G if H is also another normal subgroup of G the NH (the set of elements of the form nh for n in N and h in H) is a normal subgroup of G. That was all fine but I was wondering if the converse is true. Considering the exercise didn't ask to do this I'm guessing no, but I'm finding it hard to create a counter-example.
I'm trying to use the symmetric group. I thought that the alternating group A_{4} could maybe be constructed from the Klein 4 group and another non-normal subgroup but I don't know how to show this, or if it's even true. Are there maybe simpler examples?
 
Physics news on Phys.org
What if N=G?
 
If H is the klein-4 group, and N = <g> where g\in A4\setminus H, then the product NH=A4 just based on index.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
Back
Top