veljko_c said:
Let on side BC of square ABCD set point E, BE:EC=1:2. On side DC point F
(D-C-F), CF:DF=1:3.
Prove that point M = intersection AE and BF, is on circle about ABCD.
Please help.
Thnx
Here's one way, not necessarly the best but just because I tend to be "analytic". Set up a coordinate system in which the origin is at the center of the square, side AB is x= -1, side CD is x= 1, side BC is y= -1, and side AD is y= -1.
B is (-1, -1) and C is (1, -1) so E is (x,-1) with 1- x= 2(x- (-1)) so 1- x= 2x+ 2 or 3x= -1 so x= -1/3. E is (-1/3, -1) and the line through A and E, the line through (-1, 1) and (-1/3,-1), is y= -3(x+1)+ 1= -3x- 2.
D is (1, 1) so F is (1, y) with y+1= 3(y- 1)= 3(y- 1) so y+ 1= 3y- 3 or 2y= 4 so y= 2. F is (1, 2) and the line through B and F, the line through (-1, -1) and (1, 2) is y= (3/2)(x+1)-1= (3/2)x+ 1/2.
M is the point at which those two lines intersect so you can find it by solving the two equation simultaneously. Then find the distance from that point to the center of the square, (0,0), and show that is the same as the distance from (0,0) to each of the vertices of the square.