Is R^2 a Field with Component Wise Operations?

  • Thread starter Thread starter quasar987
  • Start date Start date
  • Tags Tags
    Properties
quasar987
Science Advisor
Homework Helper
Gold Member
Messages
4,796
Reaction score
32
Hello,

Am I missing something or is R^2 a field with the obvious component wise addition and multiplication (a,b)*(c,d)=(ac,bd)?
 
Physics news on Phys.org
EDIT: Completely ignore this. Didn't think it through. For an example of why it's false see Office Shredder's reply.

Yes if R is a field, then R^2 is a field (clearly commutative, and (a,b) has inverse (1/a,1/b) ).
 
Last edited:
What's the inverse of (3,0)?
 
Ok, that's what I was missing :)
 
If R, S are non-trivial integral domains, then their direct product R\times S is never an integral domain, because it always has zero-divisors: (a,0).(0,b)=0. In particular, this holds for fields.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top