Horse
- 34
- 0
Is it equivalent?
<br /> ( \forall x \in S \forall y P(x) ) <=> \neg ( \exists x \in S^{c} \exists y \neg P(x) )<br />
Attempt at solution
I think it should be
<br /> ( \forall x \in S \forall y P(x) ) <=> \neg ( \exists x \in S \exists y \neg P(x) )<br />
The diiference to the above statement is S^{c}.
<br /> ( \forall x \in S \forall y P(x) ) <=> \neg ( \exists x \in S^{c} \exists y \neg P(x) )<br />
Attempt at solution
I think it should be
<br /> ( \forall x \in S \forall y P(x) ) <=> \neg ( \exists x \in S \exists y \neg P(x) )<br />
The diiference to the above statement is S^{c}.
Last edited: