Q-reeus said:
How could I? As per above, by definition, GW's = non-stationary spacetime. Hardly the issue.
OK, so then the only possible point of disagreement is the issue of whether or not the Komar mass is defined in a non-stationary spacetime:
I can, of course, provide several references that state explicitly the the Komar mass is only defined on stationary spacetimes, including your OP. So I don't think that is actually the issue. I think you understand quite clearly that it is not defined in non-stationary spacetimes. From the above it seems that the issue is that you believe that, even though it is not defined, it is a good approximation:
Q-reeus said:
And this is where it get's to be slippery eel wrestling territory. Here's an excised piece from #9:
Honestly, there are truckloads of gedanken experiments accepted as valid that regularly fail to include every single possible factor and detail. How could Einstein get away with his use of trains and lights in SR setting when 'clearly' the masses involved are warping spacetime thus invalidating the flat spacetime postulated in SR. But of course we use reasonableness and accept such warping is of no real consequence.
There are several ways that you can justify an approximation.
1) You can do a full non-approximated calculation of your quantity of interest and demonstrate that the approximated calculation is close.
2) You can expand the quantity of interest as an infinite series with terms of strictly decreasing magnitude and stop when the next term gets small enough.
3) You can expand the quantity of interest as the approximated plus some error term and determine some upper bound on the error term or expand the error term as in 2. (Btw, this approach is very common in the analysis of GWs, called linearized EFE or perturbative analysis. If you want to pursue your analysis this is the approach I would recommend.)
4) You can parameterize your degree of approximation and establish a maximum value for the parameter based on your measurement errors.
The gedanken experiments that I am aware of can be justified by one or more of those above methods. You have not justified your approximation in any of those ways nor provided any other justification besides your unsubstantiated assertion that it is small, such as:
Q-reeus said:
Apply that to this case of a basketball sized shell vibrating in breathing mode. Just on the assumption pressure really does provide an uncompensated gravitating mass ms as per #1, the fluctuation in ms will be gravitationally minute. Any resulting monopole GW's so generated will be vastly smaller again in magnitude.
You certainly haven't demonstrated that. Just as you challenged my claim that the magnitude of the errors were equal to the magnitude of the GWs, so I challenge your claim that the magnitude of the errors are small. And just as I had to drop my claim since I wouldn't justify it, so I expect you to drop your claim if you won't justify it. A repeated assertion that they are small is not a justification.