pcvrx560
- 7
- 0
If I had an integral
\int_{-1}^{1}e^{x}dx
Then performing the substitution x=\frac{1}{t} would give me
\int_{-1}^{1}-e^\frac{1}{t}t^{-2}dt
Which can't be right because the number in the integral is always negative. Is this substitution not correct?
Sorry if I am being very thick but I can't figure out why I can't evaluate this simple integral with this change of variables.
\int_{-1}^{1}e^{x}dx
Then performing the substitution x=\frac{1}{t} would give me
\int_{-1}^{1}-e^\frac{1}{t}t^{-2}dt
Which can't be right because the number in the integral is always negative. Is this substitution not correct?
Sorry if I am being very thick but I can't figure out why I can't evaluate this simple integral with this change of variables.
Last edited: