Is \sum_5^\infty \frac{1}{(n-4)^2} = \sum_1^\infty \frac{1}{n^2} Legal?

  • Thread starter Thread starter e^(i Pi)+1=0
  • Start date Start date
e^(i Pi)+1=0
Messages
246
Reaction score
1
I just wanted to check that this was legal.

\sum_5^\infty \frac{1}{(n-4)^2} = \sum_1^\infty \frac{1}{n^2} ?
 
Physics news on Phys.org
Sure it is. They are the same series, aren't they?
 
Thanks
 
A slightly more formal derivation would be:
\sum_{n=5}^\infty \frac{1}{(n-4)^2}
Let i= n- 4. Then (n-4)^2= i^3 and when n= 5, i= 5- 4= 1. Of course, i= n-4 goes to infinity as n goes to infinity so
\sum_{n=5}^\infty \frac{1}{(n-4)^2}= \sum_{i=1}^\infty \frac{1}{i^2}

But both "n" and "i" are "dummy" variables- the final sum does not involve either- so we can change them at will. Changing "i" to "n" in the last sum,
\sum_{n=5}^\infty \frac{1}{(n-4)^2}= \sum_{i=n}^\infty \frac{1}{n^2}

The crucial point is that, as Dick said, "they are the same sequence":
\sum_{n=5}^\infty \frac{1}{(n-4)^2}+ \frac{1}{(5-4)^2}+ \frac{1}{(6-4)^2}+ \frac{1}{(7- 4)^2}+ \cdot\cdot\cdot= 1+ \frac{1}{4}+ \frac{1}{9}+ \cdot\cdot\cdot
\sum_{n= 1}^\infty \frac{1}{n^2}= \frac{1}{1^2}+ \frac{1}{2^2}+ \frac{1}{3^2}+ \cdot\cdot\cdot= 1+ \frac{1}{4}+ \frac{1}{9}+ \cdot\cdot\cdot
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top