Is the concept of prime numbers biased by their factorization definitions?

sciencecrazy
Messages
5
Reaction score
0
--> Why are prime numbers so important to number theory? (Apart from speculations of being connected to energy levels of complex quantum systems.)

--> Let for time being, primes that we know of, be called primes of "type-2". Here '2' comes from the definition of primes. Since we consider primes as those numbers, which have no "pair" of factors, apart from 1 and itself.
If a number c is not prime, then c= a*b has atleast some a and b ≠1 or c.

--> Let us now call a number, a prime of "type-3",such that number has no 3-tuple of factors apart from 1 or number itself.
It's converse can be stated as:
d = a*b*c
where a,b,c ≠ 1or d.

--> it can be observed that primes of 'type 2' are actually subset of 'type 3'.
--> All 2-digit numbers are primes of type 3.
--> If we go on increasing our type numbers, all smaller types are actually subset of larger types.

--> Doesn't this makes idea of primes look abstract or random, and defining them on basis of 'pairs of factors' a kind-of bias?
--> My apolgies, if i said something wrong.
 
Physics news on Phys.org
Hi, sciencecrazy,
primes, as it is often said, are the 'building blocks' of natural numbers (the numbers you use to count: 1, 2, 3, 4, ...). The natural numbers are "bags of primes": you can imagine each one as a little bag containing a collection of primes (possibly repeated) inside. The content of this bag is a kind of "signature", personal and unique for each number: the number 20, for example, has two 2's and one 5 in its bag, and it is the only number with this content; another number would have a different collection of primes in its bag. The number 1 is the owner of the empty bag, with no primes in it. Many properties in number theory are traceable to these "bags": for example, two numbers are coprime when the intersection of their bags is empty.

As for your "type-n" classification, consider the differences between types. For example, think of the "type-3" primes which are *not* of "type-2". These are numbers with exactly two primes in their bags, neither more nor less. They are known as "semiprimes", and they play a role in cryptography. The principle is that, for very large numbers, multiplying two primes to produce a semiprime is very easy; while, on the other hand, having the semiprime and trying to find the two primes that compose it is computationally very expensive.
 
Last edited:
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top