Is the Critical Point (0,0) a Center in This Plane Dynamic System?

wu_weidong
Messages
27
Reaction score
0

Homework Statement


Consider the plane dynamic system \dot{x} = P(x,y), \dot{y} = Q(x,y) with the condition that O(0,0) is a critical point. Suppose P(-x,y) = -P(x,y) and Q(-x,y) = Q(x,y). Is the critical point (0,0) a center? Why?

The Attempt at a Solution


I know that for (0,0) to be a centre, the eigenvalues of A should satisfy
\lambda_1 + \lambda_2 = tr(A) = 0, \lambda_1 \lambda_2 = det(A) > 0

Also, the matrix A at (0,0) is
<br /> \left[<br /> \begin{array}\\<br /> \frac{\partial P}{\partial x} &amp; \frac{\partial P}{\partial y} \\<br /> \frac{\partial Q}{\partial x} &amp; \frac{\partial Q}{\partial y} \\<br /> \end{array}<br /> \right]<br />

That's all I've got and I'm not sure how I can make use of the information P(-x,y) = -P(x,y) and Q(-x,y) = Q(x,y) other than that P is an odd function and Q is an even function.

Please help.

Thank you,
Rayne
 
Physics news on Phys.org
It provides some hints if you try to find the upper and lower bounds on eigenvalues depending on matrix norm and matrix measure of A.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top