I Is the Dimensionality of Vector Spaces the Same for Different Quantum States?

  • I
  • Thread starter Thread starter arpon
  • Start date Start date
  • Tags Tags
    Box Particle
arpon
Messages
234
Reaction score
16
Consider the particle in a box problem. The number of energy eigenbasis is 'countable' infinity. But the number of position eigenbasis is 'uncountable' infinity. x can take any value from the interval [0,L] Whichever basis I choose, shouldn't the dimensionality of the vector space be the same?
 
Physics news on Phys.org
That is true, iff the „eigenstates” are element of the same topological vector space. But the space of the eigenvectors of X is larger than the space of the eigenvectors of H, or, equivalently, the two spectral equations for X and H do not have solutions in the same space.
 
  • Like
Likes vanhees71
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top