Is the Expectation Value of Momentum Always Zero in Time-Independent States?

Johny18
Messages
1
Reaction score
0
Good Evening Fellows,
I have the following question,
So far I have learned that the expectation value of momentum is equal the time derivative of the expectation value of position. If the potential only depends upon position and not on time. Then, if we use the time independent schrodinger equation the wavefuntion will be separable into a purely function of x and a function of t. Therefore, is it correct to assert that the expectation value of momentum will always be zero for this case, since the expectation value of position will be a constant?
 
Physics news on Phys.org
For the stationary states (energy eigenstates) that you get by solving the time-independent SE, this is true.

However, it is not true for states that are superpositions of energy eigenstates. Consider for example a superposition of the first two energy eigenstates of the "particle in a box:"

$$\Psi(x,t) = a_1 \psi_1(x)e^{-iE_1 t / \hbar} + a_2 \psi_2(x)e^{-iE_2 t / \hbar}$$

For this wavefunction, the expectation values of position and momentum are not constant.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top