praharmitra
- 308
- 1
Given a stationary state
<br /> H \psi = E \psi \Rightarrow \left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V(x)\right)\psi = E\psi<br />
Firstly is it true that
<br /> \left<p\right> = \frac{\hbar}{i}\int\psi^* \frac{\partial \psi}{\partial x} dx= 0<br /> ??
If it is, how do we prove it?
<br /> H \psi = E \psi \Rightarrow \left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V(x)\right)\psi = E\psi<br />
Firstly is it true that
<br /> \left<p\right> = \frac{\hbar}{i}\int\psi^* \frac{\partial \psi}{\partial x} dx= 0<br /> ??
If it is, how do we prove it?