Is the Fourier Transform of a Constant a Dirac Delta Function?

Kolahal Bhattacharya
Messages
133
Reaction score
1

Homework Statement



Fourier transform of a constant

Homework Equations





The Attempt at a Solution



I am trying to prove that Fourier Transform of a constant is a Dirac delta function.I have fed f(x)=1 in the formula of Forward Fourier transform and got F(k)=int{exp[-ik*pi*x]}dx
I know that this is delta function with argument k.But cannot prove it.It's sure to give infinity at k=0.But,for other values of k I am not getting the integral=0.So,an attempt through the way of definition fails.Can anyone help me?
 
Physics news on Phys.org
Start with \delta(x) and Fourier transform it. You get a constant.
 
Here is a method how to do it.It took some time,however.

First, you find the F.T. of delta(x) and it turns out as a constant F(k)=1
Then,you did inverse transform of 1 which yields a delta function.
Like this: int{exp[ik'x']dk'}=2*pi*delta(x')
Putting k'=x and x'=-k,we have
int{exp[-ikx]dx}=2*pi*delta(-k)

Now consider the F.T. of a constant function g(x)=c
G(k)=int{c exp[-ikx]dx}=c[2*pi*delta(-k)]=2*pi*c delta(k)
 
  • Like
Likes physics loverq
If you compute Int( exp(-ikx), x=-Infinity..Infinity) you get Infinity for k=0 and 2/k sin(k Infinity) that is undefined for k=/=0. To remove this ambiguity use the Residue theorem giving Int( exp(-ikz), z on C ) = 0 where C is the contour of a half-disk of radius R. Then using the parametrisation z = R exp (i alpha) and letting R->Infinity you will find Int( exp(-ikx), x=-Infinity..Infinity) = 0 for k =/=0. Using this reasoning you get that Int( exp(-ikx), x=-Infinity..Infinity) is "proportional" to delta(k).

To understand the factor 2*pi you have to work in the context of the definitions of the Fourier transform and of his inverse. These definitions results from the Fourier serie as T->Infinity, see http://en.wikipedia.org/wiki/Fourier_Transform.
 
Last edited:
To solve this, I first used the units to work out that a= m* a/m, i.e. t=z/λ. This would allow you to determine the time duration within an interval section by section and then add this to the previous ones to obtain the age of the respective layer. However, this would require a constant thickness per year for each interval. However, since this is most likely not the case, my next consideration was that the age must be the integral of a 1/λ(z) function, which I cannot model.

Similar threads

Back
Top