Is the Goldbach Conjecture part of a larger pattern?

  • Thread starter Thread starter raycb
  • Start date Start date
  • Tags Tags
    Conjecture
raycb
Messages
4
Reaction score
0
I wonder if the Goldbach Conjecture could be extended, so that the even number halfway between two primes that differ by 4n + 2 can be written as the sum of two primes from pairs that differ by 4n + 2? This conjecture often fails for the first few numbers, but then seems to begin working.

For example, the midpoint of 3 and 13 is 8, which cannot be written as the sum of two primes from pairs that differ by 10, but the midpoint of 103 and 113 is 108, which can be written as the sum of 29 and 89, which come from the pairs 19 and 29, and 79 and 89.
 
Physics news on Phys.org
raycb said:
I wonder if the Goldbach Conjecture could be extended, so that the even number halfway between two primes that differ by 4n + 2 can be written as the sum of two primes from pairs that differ by 4n + 2? This conjecture often fails for the first few numbers, but then seems to begin working.

For example, the midpoint of 3 and 13 is 8, which cannot be written as the sum of two primes from pairs that differ by 10, but the midpoint of 103 and 113 is 108, which can be written as the sum of 29 and 89, which come from the pairs 19 and 29, and 79 and 89.

Your question seems to be:
Is it true that for every pair of odd primes p < q with q - p = 4n + 2 that there are r,s with p + 2n + 1 = r + s, where r, s, r + 4n + 2, and one of s ± (4n + 2) are prime?​
or rather whether this is true for large enough p+q.

I find lots of exceptions to this: 48 exceptions with p < q < 100, 1805 exceptions up with p < q < 1000, and 77732 exceptions with p < q < 10000.

Testing code:
Code:
test(p,q)=my(diff=q-p,m=p+diff/2);forprime(r=2,m\2,if(isprime(m-r)&isprime(r+diff)&(isprime(m-r+diff)|isprime(m-r-diff)),return(r)));0
upto(lim)=my(s=0);forprime(p=3,lim,forprime(q=p+2,lim,if((q-p)%4==0,next);if(!test(p,q),print1([p,q]);s++)));s
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top