Is the Polynomial Limit Theorem Accurate and Comprehensive?

  • Thread starter Thread starter Orion1
  • Start date Start date
  • Tags Tags
    Limits Polynomial
Orion1
Messages
961
Reaction score
3


My Calculus professor has indicated a 'shortcut' in determining polynomial fraction limits, I am inquiring if this identity is correct, and how comprehensive is this 'theory'?

Polynomial Limit Theorem:
\lim_{x \rightarrow \infty} \frac{ax^2 - x + 2}{bx^2 - 1} = \frac{a}{b}

[/Color]
 
Last edited:
Physics news on Phys.org
Orion1 said:
My Calculus professor has indicated a 'shortcut' in determining polynomial fraction limits, I am inquiring if this identity is correct, and how comprehensive is this 'theory'?
Polynomial Limit Theorem:
\lim_{x \rightarrow \infty} \frac{ax^2 - x + 2}{bx^2 - 1} = \frac{a}{b}
[/Color]

Just divide through by the highest power, then the limit becomes A/B as x -> oo.
 
Last edited by a moderator:
You can also expand your Polynomial Limit Theorem like this:
Let m , \ n \in \mathbb{Z ^ +}
If m < n:
\lim_{x \rightarrow \infty} \frac{\sum \limits_{i = 0} ^ m a_i x ^ i}{\sum \limits_{k = 0} ^ n b_k x ^ k} = 0 \quad (a_m, b_n \neq 0)
If m > n:
\lim_{x \rightarrow \infty} \frac{\sum \limits_{i = 0} ^ m a_i x ^ i}{\sum \limits_{k = 0} ^ n b_k x ^ k} \quad (a_m, b_n \neq 0) it does not have a limit.
If m = n:
\lim_{x \rightarrow \infty} \frac{\sum \limits_{i = 0} ^ m a_i x ^ i}{\sum \limits_{k = 0} ^ n b_k x ^ k} = \frac{a_m}{b_n} \quad (a_m, b_n \neq 0)
 
Last edited:

Similar threads

Replies
4
Views
2K
Replies
9
Views
2K
Replies
1
Views
1K
Replies
3
Views
1K
Replies
3
Views
1K
Back
Top