1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Is the principle of least action a tautology ?

  1. Oct 27, 2011 #1
    In classical mechanics, if we consider a force field (uniform or non-uniform) in which the acceleration [itex]\vec{a}_{\scriptscriptstyle \mathrm A}[/itex] of a particle A is constant, then

    [tex]\vec{a}_{\scriptscriptstyle \mathrm A} - \, \vec{a}_{\scriptscriptstyle \mathrm A} = 0[/tex][tex]{\vphantom{\delta \int_{t_{1}}^{t_{2}}}} \left( \vec{a}_{\scriptscriptstyle \mathrm A} - \, \vec{a}_{\scriptscriptstyle \mathrm A} \right) \cdot \delta \vec{r}_{\scriptscriptstyle \mathrm A} = 0[/tex][tex]\int_{t_{1}}^{t_{2}} \left( \vec{a}_{\scriptscriptstyle \mathrm A} - \, \vec{a}_{\scriptscriptstyle \mathrm A} \right) \cdot \delta \vec{r}_{\scriptscriptstyle \mathrm A} \; \, dt = 0[/tex][tex]\delta \int_{t_{1}}^{t_{2}} \left( {\textstyle \frac{1}{2}} \; \vec{v}_{\scriptscriptstyle \mathrm A}^{\,2} \, + \, \vec{a}_{\scriptscriptstyle \mathrm A}^{\vphantom{^{\,2}}} \cdot \vec{r}_{\scriptscriptstyle \mathrm A}^{\vphantom{^{\,2}}} \right) \, dt = 0[/tex][tex]m_{\scriptscriptstyle \mathrm A}^{\vphantom{^{\,2}}} \; \delta \int_{t_{1}}^{t_{2}} \left( {\textstyle \frac{1}{2}} \; \vec{v}_{\scriptscriptstyle \mathrm A}^{\,2} \, + \, \vec{a}_{\scriptscriptstyle \mathrm A}^{\vphantom{^{\,2}}} \cdot \vec{r}_{\scriptscriptstyle \mathrm A}^{\vphantom{^{\,2}}} \right) \, dt = 0[/tex][tex]\delta \int_{t_{1}}^{t_{2}} \left( T_{\scriptscriptstyle \mathrm A} - \, V_{\scriptscriptstyle \mathrm A} \right) \, dt = 0[/tex][tex]\delta \int_{t_{1}}^{t_{2}} L_{\scriptscriptstyle \mathrm A} \; \, dt = 0[/tex]where[tex]T_{\scriptscriptstyle \mathrm A} = {\textstyle \frac{1}{2}} \; m_{\scriptscriptstyle \mathrm A}^{\vphantom{^{\,2}}}\vec{v}_{\scriptscriptstyle \mathrm A}^{\,2}[/tex][tex]V_{\scriptscriptstyle \mathrm A} = - \; m_{\scriptscriptstyle \mathrm A}^{\vphantom{^{\,2}}} \; \vec{a}_{\scriptscriptstyle \mathrm A}^{\vphantom{^{\,2}}} \cdot \vec{r}_{\scriptscriptstyle \mathrm A}^{\vphantom{^{\,2}}}[/tex]
    If [itex]\vec{a}_{\scriptscriptstyle \mathrm A}[/itex] is not constant but [itex]\vec{a}_{\scriptscriptstyle \mathrm A}[/itex] is function of [itex]\vec{r}_{\scriptscriptstyle \mathrm A}[/itex] then the same result is obtained, even if Newton's second law were not valid.
  2. jcsd
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook

Can you offer guidance or do you also need help?
Draft saved Draft deleted