Is the sequence finite for different values of u in the logarithmic series?

  • Thread starter Thread starter zetafunction
  • Start date Start date
  • Tags Tags
    Sequence Variables
zetafunction
Messages
371
Reaction score
0
is the following sequence finite

\sum_{n=1}^{\infty} \frac{log^{u-1} (n)}{n} - u^{-1}log^{u}(n)

if u=1 then we have simply the Euler-Mascheroni constant but what happens in other cases or other values for 'u'
 
Physics news on Phys.org
I'm going to go out on a limb and guess that when you write
\sum_{n=1}^{\infty} \frac{log^{u-1} (n)}{n} - u^{-1}log^{u}(n)
you mean something like
\lim_{x\to\infty}-(\log x)^u+\sum_{n=1}^x\frac{(\log n)^{u-1}}{n}
but you may mean something else entirely.
 
no but thanks by the answer i meant

\sum_{n=1}^{\infty} \frac{log^{u-1}(n)}{n} - \int_{1}^{\infty}\frac{log^{u-1}(x)}{x}

in case u=1 we have the Euler Mascheroni constant but how about for other values ??
 
Back
Top