zetafunction
- 371
- 0
is the following sequence finite
\sum_{n=1}^{\infty} \frac{log^{u-1} (n)}{n} - u^{-1}log^{u}(n)
if u=1 then we have simply the Euler-Mascheroni constant but what happens in other cases or other values for 'u'
\sum_{n=1}^{\infty} \frac{log^{u-1} (n)}{n} - u^{-1}log^{u}(n)
if u=1 then we have simply the Euler-Mascheroni constant but what happens in other cases or other values for 'u'