Is the Symmetric Difference of Finite-Dimensional Subspaces Well-Defined?

  • Thread starter Thread starter Talisman
  • Start date Start date
  • Tags Tags
    Strange Subspace
Talisman
Messages
94
Reaction score
6
Suppose U and V are finite-dimensional subspaces of some finite-dimensional space W (over the field Q in my actual case, but probably irrelevant)

I've got a subspace in mind that I can't quite define well. I'll start with a concrete example:

Consider R^3 with orthonormal basis {x, y, z}. Let U = Span{x, y} and V = Span{y, z}. The symmetric difference of {x, y} and {y, z} is {x, z}, and the strange thing I want is Span{x, z}. I resorted to using an "obvious" basis set here, but I want to know if the thing I'm looking for is well-defined. What if I haven't picked a basis; what if it's not a normed space; what if it's not even an inner product space; etc.

A bit more formally: Let U \cap V = I have dimension k > 0. Then I can pick an orthonormal basis for I, Bi = {b1, ..., bk}, and then choose an orthonormal basis for U + V = Span(U \cup V) (call it simply B) that has Bi as a subset. Now Span(B \ Bi) is uniquely defined (I think).

Is that well-defined, or is my intuition wrong? If it is, is there a cleaner way of specifying it?

Even if this is true, my problems have only just begun: the W I have in mind is not an inner product space; it's R over Q, with U and V being subspaces of some n-dimensional subspace S.

S is isomorphic to Q^n, so I can define an inner product and norm, but this seems like a painful way to go about things.
 
Last edited:
Physics news on Phys.org
The orthocomplement of Bi in U+V ...

In general, the orthocomplement of K in H (K a subspace of H) is the set of all elements of H orthogonal to K. But you probably need real scalars, not rational.
 
Thanks g_edgar! The following then seems like it should hold, although my proof may be wrong.

Let U \cap V = I have dimension k > 0. Let O be the orthocomplement of I in W = U + V, O_{U} be the orthocomplement of I in U, and O_{V} be the orthocomplement of I in V.

Then O = O_{U} + O_{V}.

Seems straightforward: If U has dimension u, V has dimension v, and I has dimension i, then O is a subspace of W with dimension u+v-2i. Meanwhile, O_u has dimension u-i, and O_v has dimension v-i. Since O_u and O_v are linearly independent subspaces of O and have dimensions summing to u+v-2i, O_u + O_v = O.

Maybe?
 
Last edited:
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top