DavidReishi said:
Are you sure it requires all that? What I meant is that it wouldn't seem to make sense to hold that, from 10 feet away, the visual information of the bacteria isn't hitting my face but is scattered too far and wide, if the "visual information of the dish's form," i.e., that info that allows my brain to form a clear, crisp, hard-edged image of the dish, has no problem making it into my small pupils.
You are right- it doesn't have to be that complicated. Usually it's a lot easier and more qualitative. The easiest method is to use the coherency matrix: if the value is exactly 1, you can perfectly reconstruct the optical field at the source. If it's less than 1, there is uncertainty in the detected field as compared to the 'truth'. When the coherency matrix is zero, the optical field has become totally randomized. There are rules that the coherency matrix obeys during the propagation of light.
The references I have posted, especially the ones by Emil Wolf, spell all this out in detail. They are worth reading.
It can be shown that when an optical field propagates through random media (i.e. clear air turbulence), the coherency matrix decreases in value. Therefore, as light propagates through the atmosphere, through the ocean, through milk, through skin, it rapidly becomes no longer possible to perfectly reconstruct the object field because the coherency matrix is less than 1.
DavidReishi said:
From your words, one might think that satellite images of Earth in which the human form is visibe aren't practically possible. Is it merely the difference in scale between a person's head and a person's skin cell that would necessite long periods of photon collection and loss of information due to movement?
Well, here again it depends on what you mean- KH-11 satellites can detect objects on Earth as small as a grapefruit.
https://en.wikipedia.org/wiki/KH-11_Kennan
That doesn't mean it can image you with grapefruit-sized blurry Airy disks. But I have been careful not to state you can't see people from space. We can't see aliens on other planets. Whenever light propagates through disordered media there is a progressive loss of coherence. The rate of loss depends entirely on the specifics.
In any case, imaging people on Earth with satellites is dumb now- everyone uses drones. Humans can be well imaged with those.
DavidReishi said:
Again, doesn't satellite imagery containing the human form prove this to be a non-issue? Or are you saying that the decohering effect of Earth's atmosphere comes into play only regarding smaller visual details?
That's close to what I mean. Certainly, in order to image smaller details, the aperture has to get larger- either a monolithic aperture or a synthetic aperture, like VLBI. But there's another limit on how large the aperture can be before you simply stop gaining spatial detail, and that size is set by the coherence- once the light hitting different parts of the aperture is mutually incoherent, it cannot contribute additional information to the final image. The details of the coherence: the rate of loss in time and length scales depends entirely on the specifics.