Is There a Paradox in the Equation for Oblate Spheroids?

  • Thread starter Thread starter ianyappy
  • Start date Start date
AI Thread Summary
The discussion centers on the perceived paradox in the equations for an oblate spheroid, particularly in the context of Earth's model using the WGS 84 system. The standard equation for an oblate spheroid features constant denominators, while the equations relating ECEF coordinates to geodetic latitude introduce variable denominators dependent on latitude. This raises questions about the consistency of the ECEF system across different geodetic latitudes. The confusion stems from the distinction between geocentric and geodetic latitude, with implications for how coordinates are defined. Ultimately, the discussion highlights the complexities in transitioning between different coordinate systems for oblate spheroids.
ianyappy
Messages
11
Reaction score
0
I'm a little confused by what appears to me to be a paradox. I understand that the equation for an oblate spheroid is given by
\begin{equation}
\frac{x ^ 2+y^2}{a^2} + \frac{z ^ 2}{c^2}= 1, c < a
\end{equation}
where a and c are the semi-major and semi-minor axes respectively.
However, the definitions for the WGS 84 oblate spheroid model of the Earth using the ECEF <--> geodetic latitude/longitude/height are (Wiki Link) the following equations
\begin{equation}
x = N(\phi) cos\phi cos\lambda \\
y = N(\phi) cos\phi sin\lambda \\
z = N(\phi)(1-e^2) sin \phi \\
N(\phi) = \frac{a}{\sqrt{1-e^2 sin^2\phi}}
\end{equation}
where \phi is the geodetic latitude, \lambda is the longitude, e is the eccentricity and a is the semi-major axis. I removed the height parameter as I am only concerned with the spheroid surface.

I have also read a paper which states the equation relating the ECEF X,Y,Z is
\begin{equation}
\frac{x ^ 2+y^2}{N(\phi)^2} + \frac{z ^ 2}{[N(\phi)(1-e^2)]^2}= 1
\end{equation}

The last equation has denominators that depends on the geodetic latitude while the first equation for the oblate spheroid has denominators which are constant. Is there something wrong?
 
Last edited:
Mathematics news on Phys.org
The equation you quote for an oblate spheroid uses geocentric latitude. I believe the equations on the Wiki page use geodetic latitude. There is a comment about that on the page you linked.
 
Well yes, but isn't ECEF independent of geodetic/geocentric coordinates? Then in the last equation, this seems to suggest that x,y,z must fit a different equation for different geodetic latitudes.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top