Is there a typo in this question?

  • Thread starter Thread starter TheFerruccio
  • Start date Start date
TheFerruccio
Messages
216
Reaction score
0

Homework Statement



Find a potential f = grad \vec{v} for a given \vec{v}(x,y,z)

Homework Equations



\vec{v} = [3x, 5y, -4z]

The Attempt at a Solution



You can't take the gradient of a vector field in this context.
 
Physics news on Phys.org
gradv = (3,5,-4).

What are you talking about ?

Gradient of a scalar field is 0.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top