Is there a unique identity element for matrices?

Gear300
Messages
1,209
Reaction score
9
For a set S, there is an identity element e with respect to operation * such that for an element a in S: a*e = e*a = a.

For a matrix B that is m x n, the identity element for matrix multiplication e = I should satisfy IB = BI = B. But for IB, I is m x m, whereas for BI, I is n x n. Doesn't this mean that the two identity elements are different?
 
Mathematics news on Phys.org
If m is not equal to n, then, for b an m x n matrix, b*a maps a m dimensional vector to an n dimensional vector. a*b maps an n dimensional vector to an m dimensional vector. for m not equal to n, b*a= a and a*b= a are both impossible and there is no identity matrix.
 
HallsofIvy said:
If m is not equal to n, then, for b an m x n matrix, b*a maps a m dimensional vector to an n dimensional vector. a*b maps an n dimensional vector to an m dimensional vector. for m not equal to n, b*a= a and a*b= a are both impossible and there is no identity matrix.

So for such cases, would we just say there is a right identity matrix and a left identity matrix? If this was the case, then wouldn't it also imply that the identity mapping is not unique (x2 - x2 + x = x - x + x)? I was thinking (just right now) that the identity mapping simply depended on the form I(x) = x, in which a mapping is defined through the correspondence between a domain and codomain rather than the process through which the mapping occurs. In the same sense, would we say that an identity matrix is simply a matrix that follows the Kronecker delta form regardless of its dimensions?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top